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A new general framework for approximate nonreflecting boundary conditions in wave scattering involves a set of local Trefftz
functions – outgoing waves – and a commensurate set of degrees of freedom (dof). With specific choices of bases and dof, one obtains
classical Engquist-Majda and Bayliss-Turkel conditions. Other choices yield a variety of approximate conditions. With additional dof
on the artificial boundary, the accuracy of the numerical solution can approach machine precision even on fairly coarse grids, as
illustrated numerically.

Index Terms—Boundary conditions, approximation methods, wave propagation, electrodynamics.

I. Introduction

THE critical role of artificial boundary conditions or
Perfectly Matched Layers for finite difference or finite

element solution of wave problems is well known (see e.g.
[1]–[6]). We consider the frequency domain wave equation

∇ · µ−1∇u + k2
0εu = f in Rn, n = 1, 2, 3; (1)

supp f ⊂ Ω ⊂ Rn, ν ≡ 1, ε ≡ 1 in Rn \Ω

In 2D, equation (1) describes the E-mode (TM) if u is a (one-
component) electric field, µ and ε are the magnetic permeability
and dielectric permittivity, respectively; k0 = 2π/λ is the
vacuum wavenumber. The corresponding equation for the H-
mode (TE) is obtained after an obvious change of notation.
But the methodology of this paper is general and applicable
to more complex cases – 3D and vectorial. As indicated in
(1), sources f and scatterers are assumed to be confined to a
bounded domain Ω in space.

Eq. (1) is subject to the standard splitting of u into the
incident and scattered fields with standard radiation boundary
conditions (e.g. Sommerfeld) for the scattered field at infinity.
Our task, however, is to replace these theoretical conditions
with approximate but accurate and practical ones on the
exterior surface ∂Ω away from the sources and scatterers.

II. The “Trefftz Generator” of Boundary Conditions

The proposed generator of nonreflecting boundary condi-
tions has two main ingredients: (i) a set of local Trefftz
functions [8]–[11] ψα (α = 1, 2, . . . , n) – outgoing waves
satisfying the wave equation and approximating the solution
near a given point on the exterior boundary, and (ii) a set
of m degrees of freedom (dof) – linear functionals lβ(u)
(β = 1, 2, . . . ,m); m is not usually equal to n. To elaborate,
let the exact solution be approximated locally as a linear
combination u =

∑
α cαψα = cTψ, where c is a coefficient

vector and ψ is a vector of basis functions; both vectors are in
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general complex. Coefficients c may be different at different
boundary points, but for simplicity of notation this is not
explicitly indicated. We are looking for a suitable boundary
condition of the form

∑
β sβlβ(u) = 0, where s ∈ Cm is a set of

coefficients (“scheme”) to be determined. We require that the
scheme be exact for any linear combination of basis functions.
Straightforward algebra then yields

s ∈ Null NT (2)

where NT is an n × m matrix with entries NT
αβ = lβ(ψα).

This whole development is completely analogous to that of
FLAME [7]–[9], where the dof are the nodal values of the
solution on a given grid stencil. It is, however, interesting to
consider more general dof – e.g. derivatives. (Gratkowski [12]
uses similar ideas to derive analytical boundary conditions for
static problems, without the nullspace formula.)

A few interesting combinations of basis functions and
dof are summarized in Table I. “Parametric derivatives”
of a plane wave mean the following. Let ψ(x, y, k, θ) =

exp (− jk(x cos θ + y sin θ)) be an outgoing plane wave relative
to the half-space x > 0. Differentiating this wave successively
with respect to k at k = k0 or, alternatively, with respect to
θ at θ = 0, one obtains a Trefftz basis set, tailored toward
accurate approximation of the solution near normal incidence.
(In practice, however, this approximation tends to be good
in a broad range of angles.) This basis set, with appropriate
derivatives as dof [11], leads to the Engquist-Majda condition.

Furthermore, as also indicated in Table I, radial derivatives
∂u/∂r at the boundary nodes of the grid can be added to the
set of dof. One could view that as “double nodes” carrying
two dof at the boundary: solution and its radial derivative. As
our numerical results show, these additional dof improve the
convergence and accuracy of the method dramatically.

III. Numerical Examples

As illustrative examples, we consider two canonical scatter-
ing problems for which analytical solutions are well known:
scattering from either a perfectly conducting or a dielectric



TABLE I
Absorbing Conditions Resulting from Particular Choices of Bases and Dof

Fig. 1. Grid stencils for nine-point absorbing schemes: (a) at the
corner; (b) at the boundary edge. Circles indicate stencil nodes; double
circles – “double nodes” carrying two dof, u and ∂u/∂r.

cylinder, infinite in the z direction and with a circular cross-
section in the xy-plane. In all cases, a uniform Cartesian grid
with size h is introduced. In the bulk, we use 9-point FLAME
schemes [8], [9] with either eight plane waves or eight lowest-
order cylindrical harmonics as a basis. At the exterior boundary,
the scheme is either 6-point or, with three “double nodes”
at the boundary, 9-point (Fig. 1). In the latter case, seven
outgoing Hankel waves (concentric with the scatterer) are used
as a FLAME basis, which produces two (=9–7) independent
schemes. The exterior boundary was placed at 1.5λ from the
scatterer. Convergence is fundamentally of order 6 (Figs. 2,
3), despite the presence of the air-dielectric interface and
the nonreflecting conditions. (Convergence deteriorates slightly
when the accuracy approaches machine precision and roundoff

errors become noticeable.)

IV. Conclusion

The proposed automatic generator of high-order nonreflect-
ing boundary conditions is based on a set of local Trefftz basis
functions (outgoing waves) and a commensurate set of degrees
of freedom. The generator reproduces classical Engquist-Majda
and Bayliss-Turkel conditions but also opens up avenues for
developing new conditions. For canonical problems of 2D
scattering, convergence of order six on 9-point stencils is
attained, and the relative error of the numerical solution is on
the order of 10−5 – 10−8 with 10 – 20 grid points per vacuum
wavelength. We are not aware of alternative methods yielding
a similar level of accuracy on comparable grids. Extensions to
3D and vectorial problems are possible.

Fig. 2. Relative solution error. Scattering from a perfectly conducting
cylinder of radius rcyl = 0.2λ.

Fig. 3. Relative solution error. Scattering from a dielectric cylinder.
εcyl = 2. Diamonds: rcyl = 0.2λ; triangles: rcyl = 0.4λ. Dashed line:
O(h6) reference.
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